| Please write clearly in block capitals. |                  |
|-----------------------------------------|------------------|
| Centre number                           | Candidate number |
| Surname                                 |                  |
| Forename(s)                             |                  |
| Candidate signature                     |                  |

## A-level MATHEMATICS

Please note that question 13 uses the original Large Data Set "Family Food". This was replaced by the data set "Transport Stock Vehicle Database" in A-level exams from June 2020. If you'd like to see the original data set, please contact maths@aqa.org.uk.

Paper 3

Friday 15 June 2018

Afternoon

### Time allowed: 2 hours

#### Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

#### Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do **not** use the space provided for a different question.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

#### Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

#### Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

| For Examiner's Use |      |  |  |  |
|--------------------|------|--|--|--|
| Question           | Mark |  |  |  |
| 1                  |      |  |  |  |
| 2                  |      |  |  |  |
| 2<br>3<br>4<br>5   |      |  |  |  |
| 4                  |      |  |  |  |
| 5                  |      |  |  |  |
| 6                  |      |  |  |  |
| 7                  |      |  |  |  |
| 8                  |      |  |  |  |
| 9                  |      |  |  |  |
| 10                 |      |  |  |  |
| 11                 |      |  |  |  |
| 12                 |      |  |  |  |
| 13                 |      |  |  |  |
| 14                 |      |  |  |  |
| 15                 |      |  |  |  |
| 16                 |      |  |  |  |
| 17                 |      |  |  |  |
| 18                 |      |  |  |  |
| TOTAL              |      |  |  |  |



|   |                                  | Section A             | A                    |                 |          |
|---|----------------------------------|-----------------------|----------------------|-----------------|----------|
|   | Answer <b>al</b>                 | I questions in the    | e spaces provided.   |                 |          |
| 1 | A circle has equation $(x - x)$  | $(y+4)^2 + (y+4)^2 =$ | 9                    |                 |          |
|   | What is the area of the cir      | cle?                  |                      |                 |          |
|   | Circle your answer.              |                       |                      |                 | [1 mark] |
|   | 3π                               | 9π                    | 16π                  | 81π             |          |
| 2 | A curve has equation $y =$       | $x^5 + 4x^3 + 7x +$   | q where $q$ is a pos | sitive constant |          |
|   | Find the gradient of the cu      | irve at the point v   | where $x = 0$        |                 |          |
|   | Circle your answer.              |                       |                      |                 | [4       |
|   | 0                                | 4                     | 7                    | q               | [1 mark] |
|   | C C                              | ·                     | ·                    | 4               |          |
| 3 | The line <i>L</i> has equation 2 | x + 3y = 7            |                      |                 |          |
|   | Which one of the following       | ı is perpendicular    | to L?                |                 |          |
|   | Tick <b>one</b> box.             |                       |                      |                 | [1 mark] |
|   | 2x - 3y = 7                      |                       |                      |                 |          |
|   | 3x + 2y = -7                     |                       |                      |                 |          |
|   | $2x + 3y = -\frac{1}{7}$         |                       |                      |                 |          |
|   |                                  |                       |                      |                 |          |





|       |                                                                                         | Do not write<br>outside the |
|-------|-----------------------------------------------------------------------------------------|-----------------------------|
| 6     | A function f is defined by $f(x) = \frac{x}{\sqrt{2x-2}}$                               | box                         |
| 6 (a) | State the maximum possible domain of f. [2 marks]                                       |                             |
|       |                                                                                         |                             |
|       |                                                                                         |                             |
| 6 (b) | Use the quotient rule to show that $f'(x) = \frac{x-2}{(2x-2)^{\frac{3}{2}}}$ [3 marks] |                             |
|       |                                                                                         |                             |
|       |                                                                                         |                             |
|       |                                                                                         |                             |
|       |                                                                                         |                             |
|       |                                                                                         |                             |
|       |                                                                                         |                             |
|       |                                                                                         |                             |
|       |                                                                                         |                             |
|       |                                                                                         |                             |
|       |                                                                                         |                             |
|       |                                                                                         |                             |



| Show that the graph of $y = f(x)$ has exactly one point of inflection.     | [7 marks] |
|----------------------------------------------------------------------------|-----------|
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
|                                                                            |           |
| Write down the voluce of $x$ for which the graph of $x = f(x)$ is converge |           |
| Write down the values of x for which the graph of $y = f(x)$ is convex.    | [1 mark]  |
|                                                                            |           |
|                                                                            |           |



Do not write outside the box Given that  $\log_a y = 2\log_a 7 + \log_a 4 + \frac{1}{2}$ , find y in terms of a. 7 (a) [4 marks]

| 7 (b) When a | asked to | solve the | equation |
|--------------|----------|-----------|----------|
|--------------|----------|-----------|----------|

$$2\log_a x = \log_a 9 - \log_a 4$$

a student gives the following solution:

$$2 \log_a x = \log_a 9 - \log_a 4$$
  

$$\Rightarrow 2 \log_a x = \log_a \frac{9}{4}$$
  

$$\Rightarrow \log_a x^2 = \log_a \frac{9}{4}$$
  

$$\Rightarrow x^2 = \frac{9}{4}$$
  

$$\therefore x = \frac{3}{2} \text{ or } -\frac{3}{2}$$

Explain what is wrong with the student's solution.

[1 mark]

#### Turn over for the next question



Turn over ►

| st |                                                                                                                                                                                                                  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| w  |                                                                                                                                                                                                                  |
|    | he area of each tile is half the area of the previous tile, and the sides of the largest e have length <i>w</i> centimetres.                                                                                     |
| Fi | ind, in terms of w, the length of the sides of the second largest tile. [1 mark]                                                                                                                                 |
|    |                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                  |
| A  | ssume the tiles are in contact with adjacent tiles, but do not overlap.                                                                                                                                          |
| Sł | ssume the tiles are in contact with adjacent tiles, but do not overlap.<br>how that, no matter how many tiles are in the pattern, the total length of the series<br>f tiles will be less than 3.5w.<br>[4 marks] |
| Sł | how that, no matter how many tiles are in the pattern, the total length of the series $f$ tiles will be less than 3.5w.                                                                                          |
| Sł | how that, no matter how many tiles are in the pattern, the total length of the series $f$ tiles will be less than 3.5w.                                                                                          |
| Sł | how that, no matter how many tiles are in the pattern, the total length of the series $f$ tiles will be less than 3.5w.                                                                                          |
| Sł | how that, no matter how many tiles are in the pattern, the total length of the series $f$ tiles will be less than 3.5w.                                                                                          |
| Sł | how that, no matter how many tiles are in the pattern, the total length of the series $f$ tiles will be less than 3.5w.                                                                                          |
| Sł | how that, no matter how many tiles are in the pattern, the total length of the series $f$ tiles will be less than 3.5w.                                                                                          |
| Sł | how that, no matter how many tiles are in the pattern, the total length of the series $f$ tiles will be less than 3.5w.                                                                                          |
| Sł | how that, no matter how many tiles are in the pattern, the total length of the series $f$ tiles will be less than 3.5w.                                                                                          |
| Sł | how that, no matter how many tiles are in the pattern, the total length of the series $f$ tiles will be less than 3.5w.                                                                                          |





9 (c)

box

| Prove by contradiction that $\sqrt[3]{2}$ is an irrational number. | [7 marks] |
|--------------------------------------------------------------------|-----------|
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |
|                                                                    |           |



|          | Answer                | <b>all</b> questions | in the spac   | es provided.      |              |              |
|----------|-----------------------|----------------------|---------------|-------------------|--------------|--------------|
|          |                       |                      |               |                   |              |              |
| The tab  | le below shows t      | he probability       | / distributio | n for a discre    | te random va | riable $X$ . |
| x        | 1                     | 2                    | 3             | 4                 | 5            |              |
| P(X =    | <b>= x)</b> k         | 2 <i>k</i>           | 4 <i>k</i>    | <b>2</b> <i>k</i> | k            |              |
| Find the | e value of <i>k</i> . |                      |               |                   |              |              |
| Circle y | our answer.           |                      |               |                   |              | [1 mark]     |
|          | $\frac{1}{2}$         | $\frac{1}{4}$        |               | <u>1</u><br>10    | 1            |              |
|          | 2                     | $\overline{4}$       |               | 10                | I            |              |
|          |                       |                      |               |                   |              |              |
|          | Turi                  | n over for th        | e next que    | stion             |              |              |
|          |                       |                      |               |                   |              |              |
|          |                       |                      |               |                   |              |              |
|          |                       |                      |               |                   |              |              |
|          |                       |                      |               |                   |              |              |
|          |                       |                      |               |                   |              |              |
|          |                       |                      |               |                   |              |              |
|          |                       |                      |               |                   |              |              |







The table below shows an extract from the Large Data Set.

| Year                             | 2011 | 2012 | 2013 | 2014 | % change<br>since 2011 |
|----------------------------------|------|------|------|------|------------------------|
| Other takeaway food brought home | 0    | 0    | 0    | 0    | -29                    |

Sarah claims that the -29% change since 2011 is incorrect, as there is no change between 2011 and 2014.

Using your knowledge of the Large Data Set to justify your answer, explain whether Sarah's claim is correct.

[3 marks]

Turn over for the next question



| 14     | A teacher in a college asks her mathematics students what other subjects they are studying. |
|--------|---------------------------------------------------------------------------------------------|
|        | She finds that, of her 24 students:                                                         |
|        | 12 study physics<br>8 study geography<br>4 study geography and physics                      |
| 14 (a) | A student is chosen at random from the class.                                               |
|        | Determine whether the event 'the student studies physics' and the event 'the student        |
|        | studies geography' are independent. [2 marks]                                               |
|        |                                                                                             |
|        |                                                                                             |
|        |                                                                                             |
|        |                                                                                             |
|        |                                                                                             |
|        |                                                                                             |
|        |                                                                                             |
|        |                                                                                             |
|        |                                                                                             |
|        |                                                                                             |
|        |                                                                                             |
|        |                                                                                             |
|        |                                                                                             |
|        |                                                                                             |
|        |                                                                                             |



Г

Do not write outside the 14 (b) It is known that for the whole college: box the probability of a student studying mathematics is  $\frac{1}{5}$ the probability of a student studying biology is  $\frac{1}{6}$ the probability of a student studying biology given that they study mathematics is  $\frac{3}{8}$ Calculate the probability that a student studies mathematics or biology or both. [4 marks] Turn over for the next question Turn over ▶



| 15     | Abu visits his local hardware store to buy six light bulbs.                                 |          |
|--------|---------------------------------------------------------------------------------------------|----------|
|        | He knows that 15% of all bulbs at this store are faulty.                                    |          |
| 15 (a) | State a distribution which can be used to model the number of faulty bulbs he buys<br>[1 ma |          |
| 15 (b) | Find the probability that all of the bulbs he buys are faulty.                              | <br>ark] |
| 15 (c) | Find the probability that at least two of the bulbs he buys are faulty.                     | <br>^ks] |
|        |                                                                                             |          |
| 15 (d) | Find the mean of the distribution stated in part <b>(a)</b> .<br>[1 ma                      | <br>ark] |
|        |                                                                                             |          |



| 15 (e) | State two necessary assumptions in context so that the distribution state is valid. | d in part <b>(a)</b><br>[2 marks] |
|--------|-------------------------------------------------------------------------------------|-----------------------------------|
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        | Turn over for the next question                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     |                                   |
|        |                                                                                     | Turn over ▶                       |

|             |                                                                                                                                              | Do not wri        |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 16          | A survey of 120 adults found that the volume, $X$ litres per person, of carbonated drinks they consumed in a week had the following results: | outside th<br>box |
|             | $\sum x = 165.6$ $\sum x^2 = 261.8$                                                                                                          |                   |
| 16 (a) (i)  | Calculate the mean of X.                                                                                                                     |                   |
|             | [1 mark]                                                                                                                                     |                   |
|             |                                                                                                                                              |                   |
|             |                                                                                                                                              |                   |
|             |                                                                                                                                              |                   |
| 16 (a) (ii) | Calculate the standard deviation of $X$ .                                                                                                    |                   |
|             | [2 marks]                                                                                                                                    |                   |
|             |                                                                                                                                              |                   |
|             |                                                                                                                                              |                   |
|             |                                                                                                                                              |                   |
|             |                                                                                                                                              |                   |
|             |                                                                                                                                              |                   |
|             |                                                                                                                                              |                   |
| 16 (b)      | Assuming that $X$ can be modelled by a normal distribution find                                                                              |                   |
| 16 (b) (i)  | P(0.5 < <i>X</i> < 1.5)                                                                                                                      |                   |
|             | [2 marks]                                                                                                                                    |                   |
|             |                                                                                                                                              |                   |
|             |                                                                                                                                              |                   |
|             |                                                                                                                                              |                   |
|             |                                                                                                                                              |                   |
|             |                                                                                                                                              |                   |
|             |                                                                                                                                              |                   |
|             |                                                                                                                                              |                   |
|             |                                                                                                                                              |                   |
|             |                                                                                                                                              |                   |
|             |                                                                                                                                              |                   |



| 16 (b) (ii) | P(X=1) [1 mark]                                                                                                                                                                                                                                                                      |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                                                                                                                                                      |
| 16 (c)      | Determine with a reason, whether a normal distribution is suitable to model this data.<br>[2 marks]                                                                                                                                                                                  |
|             |                                                                                                                                                                                                                                                                                      |
|             |                                                                                                                                                                                                                                                                                      |
| 16 (d)      | It is known that the volume, <i>Y</i> litres per person, of energy drinks consumed in a week may be modelled by a normal distribution with standard deviation 0.21<br>Given that $P(Y > 0.75) = 0.10$ , find the value of $\mu$ , correct to three significant figures.<br>[4 marks] |
|             |                                                                                                                                                                                                                                                                                      |
|             |                                                                                                                                                                                                                                                                                      |
|             |                                                                                                                                                                                                                                                                                      |
|             |                                                                                                                                                                                                                                                                                      |



Turn over 🕨

| 17     | Suzanne is a member of a sports club.                                                                                                        |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------|
|        | For each sport she competes in, she wins half of the matches.                                                                                |
| 17 (a) | After buying a new tennis racket Suzanne plays 10 matches and wins 7 of them.                                                                |
|        | Investigate, at the 10% level of significance, whether Suzanne's new racket has made a difference to the probability of her winning a match. |
|        | [7 marks]                                                                                                                                    |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |
|        |                                                                                                                                              |



box

Turn over for the next question



17 (b)

Jun18/7357/3

that the new racket has improved her performance.

| 18          | In a region of England, the government decides to use an advertising campaign to encourage people to eat more healthily.               |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------|
|             | Before the campaign, the mean consumption of chocolate per person per week was known to be 66.5 g, with a standard deviation of 21.2 g |
| 18 (a)      | After the campaign, the first 750 available people from this region were surveyed to find out their average consumption of chocolate.  |
| 18 (a) (i)  | State the sampling method used to collect the survey. [1 mark]                                                                         |
| 18 (a) (ii) | Explain why this sample should not be used to conduct a hypothesis test.                                                               |
|             | [1 mark]                                                                                                                               |
|             |                                                                                                                                        |
|             |                                                                                                                                        |
|             |                                                                                                                                        |
|             |                                                                                                                                        |
|             |                                                                                                                                        |
|             |                                                                                                                                        |
|             |                                                                                                                                        |



| 18 (b)       A second sample of 750 people revealed that the mean consumption of chocolate per person per week was 65.4 g         Investigate, at the 10% level of significance, whether the advertising campaign has decreased the mean consumption of chocolate per person per week.         Assume that an appropriate sampling method was used and that the consumption of chocolate is normally distributed with an unchanged standard deviation.         [6 marks] |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| decreased the mean consumption of chocolate per person per week.<br>Assume that an appropriate sampling method was used and that the consumption of<br>chocolate is normally distributed with an unchanged standard deviation.                                                                                                                                                                                                                                           |
| chocolate is normally distributed with an unchanged standard deviation.                                                                                                                                                                                                                                                                                                                                                                                                  |
| [6 marks]                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| END OF QUESTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| END OF QUESTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                         |











Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House,

Copyright © 2018 AQA and its licensors. All rights reserved.



Guildford, GU2 7XJ.