| Please write clearly in block capitals. |                  |
|-----------------------------------------|------------------|
| Centre number                           | Candidate number |
| Surname                                 |                  |
| Forename(s)                             |                  |
| Candidate signature                     |                  |

## A-level MATHEMATICS

Paper 1

Wednesday 5 June 2019

Morning

### Time allowed: 2 hours

#### Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

#### Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do **not** use the space provided for a different question.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

#### Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

#### Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

| For Examiner's Use |      |  |
|--------------------|------|--|
| Question           | Mark |  |
| 1                  |      |  |
| 2                  |      |  |
| 3                  |      |  |
| 4                  |      |  |
| 5                  |      |  |
| 6                  |      |  |
| 7                  |      |  |
| 8                  |      |  |
| 9                  |      |  |
| 10                 |      |  |
| 11                 |      |  |
| 12                 |      |  |
| 13                 |      |  |
| 14                 |      |  |
| 15                 |      |  |
| 16                 |      |  |
| TOTAL              |      |  |



PB/Jun19/E4

Answer all questions in the spaces provided.  
1 Given that 
$$a > 0$$
, determine which of these expressions is not equivalent to the others.  
Circle your answer.  
 $[1 \text{ mark}]$   
 $-2\log_{10}\left(\frac{1}{a}\right)$   $2\log_{10}(a)$   $\log_{10}(a^2)$   $-4\log_{10}(\sqrt{a})$   
2 Given  $y = e^{4x}$ , where  $k$  is a constant, find  $\frac{dy}{dx}$   
Circle your answer.  
 $[1 \text{ mark}]$   
 $\frac{dy}{dx} = e^{4x}$   $\frac{dy}{dx} = ke^{4x}$   $\frac{dy}{dx} = kxe^{kx-1}$   $\frac{dy}{dx} = \frac{e^{kx}}{k}$   
3 The diagram below shows a sector of a circle.  
 $\sqrt{a}$   
The radius of the circle is 4 cm and  $\theta = 0.8$  radians.  
Find the area of the sector.  
Circle your answer.  
 $[1 \text{ mark}]$   
 $1.28 \text{ cm}^2$   $3.2 \text{ cm}^2$   $6.4 \text{ cm}^2$   $12.8 \text{ cm}^2$ 



| 4 | The point A has coordinates $(-1, a)$ and the point B has coordinates $(3, a)$ | The point A has coordinates $(-1, a)$ and the point B has coordinates $(3, b)$ |  |  |  |
|---|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|
|   | The line <i>AB</i> has equation $5x + 4y = 17$                                 |                                                                                |  |  |  |
|   | Find the equation of the perpendicular bisector of the points A and B.         |                                                                                |  |  |  |
|   |                                                                                |                                                                                |  |  |  |
|   |                                                                                |                                                                                |  |  |  |
|   |                                                                                |                                                                                |  |  |  |
|   |                                                                                |                                                                                |  |  |  |
|   |                                                                                |                                                                                |  |  |  |
|   |                                                                                |                                                                                |  |  |  |
|   |                                                                                |                                                                                |  |  |  |
|   |                                                                                |                                                                                |  |  |  |
|   |                                                                                |                                                                                |  |  |  |
|   |                                                                                |                                                                                |  |  |  |
|   |                                                                                |                                                                                |  |  |  |
|   |                                                                                |                                                                                |  |  |  |
|   |                                                                                |                                                                                |  |  |  |
|   |                                                                                |                                                                                |  |  |  |
|   |                                                                                |                                                                                |  |  |  |
|   | Turns and for the word succession                                              |                                                                                |  |  |  |
|   | Turn over for the next question                                                |                                                                                |  |  |  |
|   |                                                                                |                                                                                |  |  |  |
|   |                                                                                |                                                                                |  |  |  |
|   |                                                                                |                                                                                |  |  |  |
|   |                                                                                |                                                                                |  |  |  |



| 5     | An arithmetic sequence has first term <i>a</i> and common difference <i>d</i> .                   |  |  |
|-------|---------------------------------------------------------------------------------------------------|--|--|
|       | The sum of the first 16 terms of the sequence is 260                                              |  |  |
| 5 (a) | Show that $4a + 30d = 65$ [2 marks]                                                               |  |  |
|       |                                                                                                   |  |  |
|       |                                                                                                   |  |  |
| 5 (b) | Given that the sum of the first 60 terms is 315, find the sum of the first 41 terms.<br>[3 marks] |  |  |
|       |                                                                                                   |  |  |
|       |                                                                                                   |  |  |
|       |                                                                                                   |  |  |
|       |                                                                                                   |  |  |
|       |                                                                                                   |  |  |
|       |                                                                                                   |  |  |
|       |                                                                                                   |  |  |
|       |                                                                                                   |  |  |
|       |                                                                                                   |  |  |



| $S_n$ is the sum of the first <i>n</i> terms of the sequence.                    |           |
|----------------------------------------------------------------------------------|-----------|
| Explain why the value you found in part <b>(b)</b> is the maximum value of $S_n$ | [2 marks] |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
| Turn over for the next question                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |
|                                                                                  |           |



| 6                  | The function $f$ is defined by         |           |
|--------------------|----------------------------------------|-----------|
|                    | $f(x) = \frac{1}{2}(x^2 + 1), x \ge 0$ |           |
| 6 (a)              | Find the range of f.                   | [1 mark]  |
|                    |                                        |           |
|                    |                                        |           |
| 6 (b) (i)          | Find $f^{-1}(x)$                       | [3 marks] |
|                    |                                        |           |
|                    |                                        |           |
|                    |                                        |           |
|                    |                                        |           |
|                    |                                        |           |
| <b>-</b> // \ //\\ |                                        |           |
| 6 (D) (II)         | State the range of $f^{-1}(x)$         | [1 mark]  |
|                    |                                        |           |
|                    |                                        |           |
|                    |                                        |           |
|                    |                                        |           |



Do not write outside the State the transformation which maps the graph of y = f(x) onto the graph of  $y = f^{-1}(x)$ 6 (c) box [1 mark] 6 (d) Find the coordinates of the point of intersection of the graphs of y = f(x) and  $y = f^{-1}(x)$ [2 marks] Turn over for the next question Turn over ►







outside the box







| Do not write |
|--------------|
| outside the  |
| box          |

| 9 | Prove that the sum of a rational number and an irrational number is always irrational.<br>[5 marks] |
|---|-----------------------------------------------------------------------------------------------------|
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   | Turn over for the next question                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |
|   |                                                                                                     |



Do not write outside the 10 The volume of a spherical bubble is increasing at a constant rate. box Show that the rate of increase of the radius, r, of the bubble is inversely proportional to  $r^2$ Volume of a sphere  $=\frac{4}{3}\pi r^3$ [4 marks]







11 Jodie is attempting to use differentiation from first principles to prove that the gradient of  $y = \sin x$  is zero when  $x = \frac{\pi}{2}$ 

14

Jodie's teacher tells her that she has made mistakes starting in Step 4 of her working. Her working is shown below.





Complete Steps 4 and 5 of Jodie's working below, to correct her proof. [4 marks] Step 4 For gradient of curve at A, Step 5 Hence the gradient of the curve at A is given by Turn over for the next question



Do not write outside the

box

| 12 (a) | Show that the equation                                          |           | Do not write<br>outside the<br>box |
|--------|-----------------------------------------------------------------|-----------|------------------------------------|
|        | $2\cot^2 x + 2\csc^2 x = 1 + 4\csc x$                           |           |                                    |
|        | can be written in the form                                      |           |                                    |
|        | $a \operatorname{cosec}^2 x + b \operatorname{cosec} x + c = 0$ |           |                                    |
|        |                                                                 | [2 marks] |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |
|        |                                                                 |           |                                    |



| (b) ⊦ | Hence, given <i>x</i> is obtuse and                 |
|-------|-----------------------------------------------------|
|       | $2\cot^2 x + 2\csc^2 x = 1 + 4\csc x$               |
| fi    | ind the exact value of tan x                        |
| F     | <sup>-</sup> ully justify your answer.<br>[5 marks] |
|       |                                                     |
| -     |                                                     |
| _     |                                                     |
| _     |                                                     |
| _     |                                                     |
| -     |                                                     |
| -     |                                                     |
| _     |                                                     |
| _     |                                                     |
| _     |                                                     |
| _     |                                                     |
| _     |                                                     |
| _     |                                                     |
| _     |                                                     |
| _     |                                                     |
| _     |                                                     |
|       |                                                     |
|       |                                                     |
|       |                                                     |
|       | Turn over for the next question                     |
|       |                                                     |
|       |                                                     |
|       |                                                     |
|       |                                                     |



| A curve, C, has equation                      |      |
|-----------------------------------------------|------|
| $y = \frac{e^{3x-5}}{x^2}$                    |      |
| Show that C has exactly one stationary point. |      |
| Fully justify your answer.                    | [7 r |
|                                               | [, , |
|                                               |      |
|                                               |      |
|                                               |      |
|                                               |      |
|                                               |      |
|                                               |      |
|                                               |      |
|                                               |      |
|                                               |      |
|                                               |      |
|                                               |      |
|                                               |      |
|                                               |      |
|                                               |      |
|                                               |      |
|                                               |      |
|                                               |      |
|                                               |      |
|                                               |      |
|                                               |      |
|                                               |      |











| 14 (b) | Show that the exact area of A is       |           |
|--------|----------------------------------------|-----------|
|        | 16 – ln 17                             |           |
|        | Fully justify your answer.             |           |
|        |                                        | [5 marks] |
|        |                                        |           |
|        |                                        |           |
|        |                                        |           |
|        |                                        |           |
|        |                                        |           |
|        |                                        |           |
|        |                                        |           |
|        |                                        |           |
|        |                                        |           |
|        |                                        |           |
|        |                                        |           |
|        |                                        |           |
|        |                                        |           |
|        |                                        |           |
|        |                                        |           |
|        | Question 14 continues on the next page |           |
|        |                                        |           |

| 14 (c) | Explain what would happen to Caroline's answer to part (a)(ii) as $n \to \infty$ | [1 | mark] | Do not write<br>outside the<br>box |
|--------|----------------------------------------------------------------------------------|----|-------|------------------------------------|
|        |                                                                                  |    |       |                                    |
|        |                                                                                  |    |       |                                    |
|        |                                                                                  |    |       |                                    |
|        |                                                                                  |    |       |                                    |
|        |                                                                                  |    |       |                                    |
|        |                                                                                  |    |       |                                    |
|        |                                                                                  |    |       |                                    |
|        |                                                                                  |    |       |                                    |
|        |                                                                                  |    |       |                                    |
|        |                                                                                  |    |       |                                    |
|        |                                                                                  |    |       |                                    |
|        |                                                                                  |    |       |                                    |
|        |                                                                                  |    |       |                                    |
|        |                                                                                  |    |       |                                    |
|        |                                                                                  |    |       |                                    |
|        |                                                                                  |    |       |                                    |
|        |                                                                                  |    |       |                                    |





| 15 (a)       | At time <i>t</i> hours <b>after a high tide</b> , the height, <i>h</i> metres, of the tide and the velocity, $v$ knots, of the tidal flow can be modelled using the parametric equations |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | $v = 4 - \left(\frac{2t}{3} - 2\right)^2$                                                                                                                                                |
|              | $h=3-2\sqrt[3]{t-3}$                                                                                                                                                                     |
|              | High tides and low tides occur alternately when the velocity of the tidal flow is zero.                                                                                                  |
|              | A high tide occurs at 2 am.                                                                                                                                                              |
| 15 (a) (i)   | Use the model to find the height of this high tide. [1 mark]                                                                                                                             |
|              |                                                                                                                                                                                          |
|              |                                                                                                                                                                                          |
| 15 (a) (ii)  | Find the time of the first <b>low</b> tide after 2 am. [3 marks]                                                                                                                         |
|              |                                                                                                                                                                                          |
|              |                                                                                                                                                                                          |
|              |                                                                                                                                                                                          |
|              |                                                                                                                                                                                          |
|              |                                                                                                                                                                                          |
|              |                                                                                                                                                                                          |
|              |                                                                                                                                                                                          |
|              |                                                                                                                                                                                          |
| 15 (a) (iii) | Find the height of this low tide. [1 mark]                                                                                                                                               |
|              |                                                                                                                                                                                          |
|              |                                                                                                                                                                                          |
|              |                                                                                                                                                                                          |



| )) | Use the model to find the height of the tide when it is flowing with maximum | velocity<br>[3 mark |
|----|------------------------------------------------------------------------------|---------------------|
|    |                                                                              | -                   |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
| :) | Comment on the validity of the model.                                        | [2 marl             |
|    |                                                                              | נצ וומוז            |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    | Turn over for the next question                                              |                     |
|    | rum over for the next question                                               |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |
|    |                                                                              |                     |



Turn over ►

| 16 (a) | $y = e^{-x}(\sin x + \cos x)$                                      |           |
|--------|--------------------------------------------------------------------|-----------|
|        | Find $\frac{dy}{dx}$                                               |           |
|        | Simplify your answer.                                              |           |
|        |                                                                    | [3 marks] |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
| 16 (b) | Hence, show that                                                   |           |
| 10 (b) |                                                                    |           |
|        | $\int e^{-x} \sin x  \mathrm{d}x = a e^{-x} (\sin x + \cos x) + c$ |           |
|        | where <i>a</i> is a rational number.                               | [2 marks] |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |
|        |                                                                    |           |







Jun19/7357/1

box

٦

| 16 (c) (iii) | Given that                                                                           |
|--------------|--------------------------------------------------------------------------------------|
|              | $\frac{A_{n+1}}{A_n} = e^{-\pi}$                                                     |
|              | $A_n$ show that the exact value of the total area enclosed between the curve and the |
|              | x-axis is                                                                            |
|              | $\frac{1+e^{\pi}}{2(e^{\pi}-1)}$                                                     |
|              | [4 marks]                                                                            |
|              |                                                                                      |
|              |                                                                                      |
|              |                                                                                      |
|              |                                                                                      |
|              |                                                                                      |
|              |                                                                                      |
|              |                                                                                      |
|              |                                                                                      |
|              |                                                                                      |
|              |                                                                                      |
|              |                                                                                      |
|              |                                                                                      |
|              |                                                                                      |
|              |                                                                                      |
|              |                                                                                      |
|              |                                                                                      |
|              |                                                                                      |
|              |                                                                                      |
|              |                                                                                      |
|              | END OF QUESTIONS                                                                     |
|              |                                                                                      |













Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Jun19/7357/1

Copyright  $\circledcirc$  2019 AQA and its licensors. All rights reserved.



