Please write clearly in	block capitals.	
Centre number	Candidate number	
Surname		_
Forename(s)		_
Candidate signature	I declare this is my own work.	-

A-level MATHEMATICS

Paper 2

Time allowed: 2 hours

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Exam	iner's Use
Question	Mark
1	
2 3 4	
3	
4	
5 6 7	
6	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
TOTAL	

					Do not outsid
2	A curve has equation y =	= f(x)			bc
	The curve has a point of	inflection at $x = 7$			
	It is given that $f'(7) = a$	and $\mathrm{f}^{\prime\prime}$ (7) $= b$, wh	here a and b are re	al numbers.	
	Identify which one of the	statements below	must be true.		
	Circle your answer.			[1 ma	rk]
	f'(7) eq 0	f'(7) = 0	$\mathrm{f}^{\prime\prime}(7)\neq 0$		
3	A sequence is defined by				
		$u_1 = a$ and u_1	$u_{n+1} = -1 \times u_n$		
	Find $\sum_{n=1}^{95} u_n$				
	Circle your answer.			[1 ma	ırk]
	-a	0	а	- 95 <i>a</i>	-
	Turn	over for the next	question		
			•		
				Turn ove	er 🕨

Jun21/7357/2

$\frac{50}{(2x-1)}$	$\frac{(x-3)}{(1)(4-3x)}$		
in the form			
$\frac{A}{(2x-1)^2}$	$\frac{1}{1} + \frac{B}{(4-3x)}$		
where A and B are integers.		[3 mar	ˈks]

Express

6	Show that the solution of the equation			
	$5^x = 3^{x+4}$			
	can be written as			
	$x = \frac{\ln 81}{\ln 5 - \ln 3}$			
	Fully justify your answer. [4 marks]			
Turn over for the next question				

Turn over ►

7	A circle has equation	
	$x^2 + y^2 - 6x - 8y = p$	
7 (a) (i)	State the coordinates of the centre of the circle.	[1 mark]
7 (a) (ii)	Find the radius of the circle in terms of <i>p</i> .	[3 marks]
7 (b)	The circle intersects the coordinate axes at exactly three points. Find the two possible values of p .	[4 marks]

Turn over for the next question

Kai is proving that $n^3 - n$ is a multiple of 3 for all positive integer values of *n*. 8 Kai begins a proof by exhaustion. $n^3 - n = n(n^2 - 1)$ Step 1 $n^3 - n = 3m(9m^2 - 1)$ Step 2 When n = 3m, where *m* is a which is a multiple of 3 non-negative integer $n^3 - n = (3m + 1)((3m + 1)^2 - 1)$ When n = 3m + 1, Step 3 $=(3m+1)(9m^2)$ Step 4 $= 3(3m + 1)(3m^2)$ which is a multiple of 3 Therefore $n^3 - n$ is a multiple of 3 for all positive integer values of *n* Step 5 8 (a) Explain the two mistakes that Kai has made after Step 3. [2 marks] 8 (b) Correct Kai's argument from Step 4 onwards. [4 marks]

Turn over for the next question

A robotic arm which is attached to a flat surface at the origin O, is used to draw a

The arm is made from two rods OP and PQ, each of length d, which are joined at P.

The coordinates of the pen are controlled by adjusting the angle OPQ and the angle θ

between OP and the x-axis. For this particular design the pen is made to move so that the two angles are always equal to each other with $0 \le \theta \le \frac{\pi}{2}$ as shown in **Figure 2**. Figure 2 y Ρ d d Ο х Q 9 (a) Show that the *x*-coordinate of the pen can be modelled by the equation $x = d\left(\cos\theta + \sin\left(2\theta - \frac{\pi}{2}\right)\right)$ [2 marks]

9

graphic design.

A pen is attached to the arm at Q.

9 (b)	Hence, show that $x = d(1 + \cos \theta - 2\cos^2 \theta)$	
		[2 marks]
9 (c)	It can be shown that	
	$x = \frac{9d}{8} - d\left(\cos\theta - \frac{1}{4}\right)^2$	
	State the greatest possible value of x and the corresponding value of $\cos \theta$	[2 marks]
	Question 9 continues on the next page	

10	The function h is defined by
	$h(x) = \frac{\sqrt{x}}{x - 3}$
	where h has its maximum possible domain.
10 (a)	Find the domain of h.
	Give your answer using set notation. [3 marks]
10 (b)	Alice correctly calculates
	h(1)=-0.5 and $h(4)=2$
	She then argues that since there is a change of sign there must be a value of x in the interval $1 < x < 4$ that gives $h(x) = 0$
	Explain the error in Alice's argument. [2 marks]

10 (c)	By considering any turning points of \mathbf{h} , determine whether \mathbf{h} has an inverse function.
	Fully justify your answer. [6 marks]
	Turn over for Section B

		Do no
13	A vehicle, of total mass 1200 kg, is travelling along a straight, horizontal road at a constant speed of $13ms^{-1}$	outsic
	This vehicle begins to accelerate at a constant rate.	
	After 40 metres it reaches a speed of $17 \mathrm{ms^{-1}}$	
	Find the resultant force acting on the vehicle during the period of acceleration. [3 marks]	
	Turn over for the next question	
	Turn over I	

Turn over for the next question

15 A cyclist is towing a trailer behind her bicycle. She is riding along a straight, horizontal path at a constant speed. Image: Colspan="2" Col
15 (b) State one assumption you have made in reaching your answer to part (a).
The cyclist is causing a constant driving force of 40 N to be applied whilst pedalling forwards on her bicycle. The constant resistance force acting on the trailer is 12 N 15 (a) State the value of T giving a clear reason for your answer. [2 marks]
The cyclist is causing a constant driving force of 40 N to be applied whilst pedalling forwards on her bicycle. The constant resistance force acting on the trailer is 12 N 15 (a) State the value of T giving a clear reason for your answer. [2 marks]
forwards on her bicycle. The constant resistance force acting on the trailer is 12 N 15 (a) State the value of T giving a clear reason for your answer. [2 marks]
 15 (a) State the value of <i>T</i> giving a clear reason for your answer. [2 marks]
[2 marks]
15 (b) State one assumption you have made in reaching your answer to part (a).

15 (c)	Find the external resistance force acting on the cyclist and her bicycle.	[2 marks]	Do not write outside the box
	Turn over for the next question		
		Turn over ▶	

16 A straight uniform rod, *AB*, has length 6 m and mass 0.2 kg

A particle of weight *w* newtons is fixed at *A*.

A second particle of weight 3w newtons is fixed at *B*.

The rod is suspended by a string from a point x metres from B.

The rod rests in equilibrium with *AB* horizontal and the string hanging vertically as shown in the diagram below.

17	A ball is released from a great height so that it falls vertically downwards towards the surface of the Earth.
17 (a)	Using a simple model, Andy predicts that the velocity of the ball, exactly 2 seconds after being released from rest, is $2gms^{-1}$
	Show how Andy has obtained his prediction. [2 marks]
17 (b)	Using a refined model, Amy predicts that the ball's acceleration, $a \mathrm{m}\mathrm{s}^{-2}$, at time t seconds after being released from rest is
	a = g - 0.1v
	where $v \mathrm{m}\mathrm{s}^{-1}$ is the velocity of the ball at time <i>t</i> seconds.
	Find an expression for v in terms of t. [7 marks]

Г

17 (c)	Comment on the value of v for the two models as t becomes large.	
		[2 marks]
	Turn over for the next question	
	rum over for the next question	
L		

8	Two particles, <i>P</i> and <i>Q</i> , are projected at the same time from a fixed point <i>X</i> , on the ground, so that they travel in the same vertical plane.
	<i>P</i> is projected at an acute angle θ° to the horizontal, with speed $u \mathrm{m}\mathrm{s}^{-1}$
	Q is projected at an acute angle $2 heta^\circ$ to the horizontal, with speed $2u{ m ms^{-1}}$
	Both particles land back on the ground at exactly the same point, Y.
	Resistance forces to motion may be ignored.
8 (a)	Show that
	$\cos 2\theta = \frac{1}{8}$ [6 marks]

18 (b)	<i>P</i> takes a total of 0.4 seconds to travel from <i>X</i> to <i>Y</i> .	
	Find the time taken by Q to travel from X to Y.	[4 marks]
18 (c)	State one modelling assumption you have chosen to make in this question.	[1 mark]

Turn over ►

19	Two skaters, Jo and Amba, are separately skating across a smooth, horizontal surface of ice.
	Both are moving in the same direction, so that their paths are straight and are parallel to each other.
	Jo is moving with constant velocity $(2.8i + 9.6j) \text{m} \text{s}^{-1}$
	At time $t = 0$ seconds Amba is at position $(2i - 7j)$ metres and is moving with a constant speed of 8 m s^{-1}
19 (a) (i)	Explain why Amba's velocity must be in the form $k(2.8i + 9.6j) \text{ m s}^{-1}$, where k is a constant.
	[1 mark]
19 (a) (ii)	Verify that $k = 0.8$
	[1 mark]
19 (b)	Find the position vector of Amba when $t = 4$ [3 marks]

	Do
At both $t = 0$ and $t = 4$ there is a distance of 5 metres between Jo and A positions.	Amba's
Determine the shortest distance between their two parallel lines of motion.	
Fully justify your answer.	
	[5 marks]
END OF QUESTIONS	
	positions. Determine the shortest distance between their two parallel lines of motion. Fully justify your answer.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2021 AQA and its licensors. All rights reserved.

Jun21/7357/2

