

Please write clearly in	block capitals.	
Centre number	Candidate number	
Surname		_
Forename(s)		_
Candidate signature	I declare this is my own work.	-

A-level MATHEMATICS

Paper 1

Time allowed: 2 hours

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question. If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do **not** write outside the box around each page or on blank pages.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
TOTAL	

4 The graph of

y = f(x)

where

$$f(x) = ax^2 + bx + c$$

is shown in Figure 1.

	J

5	Find an equation of the tangent to the curve	
	$y = (x-2)^4$	
	at the point where $x = 0$	[2 marke]
		[3 marks]

6 (a)	Find the first two terms, in ascending powers of x , of the binomial expansio	n of
	$\left(1-\frac{x}{2}\right)^{\frac{1}{2}}$	
		[2 marks]
6 (b)	Hence, for small values of x, show that	
	$\sin 4x + \sqrt{\cos x} \approx A + Bx + Cx^2$	
	where A , B and C are constants to be found.	[4 marks]

8 (a) (ii)	Hence show that $PQ = k\sqrt{34}$, where k is an integer to be found.	
		[2 marks]

6 (b)	A circle, C, has centre $(a, -17)$.	
	L_1 and L_2 are both tangents to C.	
8 (b) (i)	Find <i>a</i> . [2 ma	arkel
(b) (ii)	Find the equation of C. [2 ma	arks]

9	The first three terms of	f an arithmetic	sequence are	given by	
		2 <i>x</i> + 5	5 <i>x</i> + 1	6 <i>x</i> + 7	
9 (a)	Show that $x = 5$ is the	e only value w	hich gives an a	rithmetic sequence.	[3 marks]
9 (b) (i)	Write down the value o	of the first tern	n of the sequen	ce.	[1 mark]
9 (b) (ii)	Find the value of the c	ommon differe	ence of the seq	uence.	[1 mark]

		1	Do no
(c)	The sum of the first N terms of the arithmetic sequence is ${\cal S}_N$ where		outsic bo
	$S_N < { m 100000}$		
	$S_{N+1} >$ 100 000		
	Find the value of <i>N</i> .		
		[4 marks]	

15

			Do not
10 (b)	Use a suitable change of sign to show that a solution to the equation		outside box
	$ heta=\sin2 heta$		
	lies in the interval given by $\theta \in \left[\frac{\pi}{5}, \frac{2\pi}{5}\right]$		
		[2 marks]	
	Oursetien 40 sentimuse on the next next		
	Question 10 continues on the next page		
		Turn over ►	

10 (c)	The Newton-Raphson method is used to find an approximate solution to the equation	
	$ heta=\sin2 heta$	
10 (c) (i)	Using $\theta_1 = \frac{\pi}{5}$ as a first approximation for θ apply the Newton-Raphson method twice to find the value of θ_3	
	Give your answer to three decimal places. [3 marks]	
10 (c) (ii)	Explain how a more accurate approximation for θ can be found using the Newton-Raphson method.	
	[1 mark]	
		٦

18

11 The polynomial p(x) is given by $p(x) = x^{3} + (b+2)x^{2} + 2(b+2)x + 8$ where b is a constant. Use the factor theorem to prove that (x + 2) is a factor of p(x) for **all** values of *b*. 11 (a) [3 marks] 11 (b) The graph of y = p(x) meets the *x*-axis at exactly two points. **11 (b) (i)** Sketch a possible graph of y = p(x)[3 marks] Y▲ \overrightarrow{x}

Jun22/7357/1

11 <i>(</i> b) (ii)	Given $p(x)$ can be written as	Do not wri outside th box
	$p(x) = (x + 2)(x^2 + bx + 4)$	
	find the value of <i>b</i> .	
	Fully justify your answer. [4 marks]]
	Turn over for the payt question	
	Turn over for the next question	
	Turn over	 ▶

Jun22/7357/1

		Do not wi
12 (a)	A geometric sequence has first term 1 and common ratio $\frac{1}{2}$	outside t box
12 (a) (i)	Find the sum to infinity of the sequence. [2 marks]
		-
		-
		-
		-
		-
12 (a) (ii)	Hence, or otherwise, evaluate	
	$\sum_{n=1}^{\infty} (\sin 30^{\circ})^n$	
	$\overline{n=1}$ [2 marks]
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-
		-

12 (b) Find the smallest positive exact value of
$$\theta$$
, in radians, which satisfies the equation
$$\int_{n=0}^{\infty} (\cos \theta)^n - 2 - \sqrt{2}$$
[4 marks]
[4 marks]
[5 ma

٦

13 (b)	Show that the maximum height of the cave above <i>OP</i> is approximately 10.5 n [netres. 6 marks]
13 (c)	Suggest one limitation of the model Garry has used.	[1 mark]

box

	-
	-
	-
	-
14 (b) Show that the exact area is given by	
$32 \ln 2 - \frac{33}{2}$	
Fully justify your answer.	
[6 marks	\$]
	-
	-
	-
	-
	-
	-
	_
	_
	_
	-
	-
	-
	-
	-
	-
	-

Turn over ►

٦

15 (a)	Given that		
		$y = \operatorname{cosec} \theta$	
15 (a) (i)	Express y in terms of sin θ .		[1 mark]
15 (a) (ii)	Hence, prove that	$\frac{\mathrm{d}y}{\mathrm{d}\theta} = -\operatorname{cosec}\theta\cot\theta$	[3 marks]

Г

5 (a) (iii)	Show that			
		$\frac{\sqrt{y^2 - 1}}{y} = \cos \theta$	for $0 < heta < rac{\pi}{2}$	[3 marks]

$x = 2 \csc u$ to show that $\int \frac{1}{x^2 \sqrt{x^2 - 4}} dx \text{for } x > 2$ can be written as $k \int \sin u du$ where k is a constant to be found. [6 marks]	15 (b) (i)	Use the substitution					
$\int \frac{1}{x^2 \sqrt{x^2 - 4}} dx \qquad \text{for } x > 2$ can be written as $k \int \sin u \ du$ where k is a constant to be found.		$x = 2 \operatorname{cosec} u$					
can be written as $k \int \sin u du$ where <i>k</i> is a constant to be found.		to show that					
$k \int \sin u \mathrm{d}u$ where <i>k</i> is a constant to be found.		$\int \frac{1}{x^2 \sqrt{x^2 - 4}} \mathrm{d}x \qquad \text{for } x > 2$					
where k is a constant to be found.		can be written as					
		$k \int \sin u \mathrm{d}u$	$k \int \sin u \mathrm{d}u$				
		where k is a constant to be found.	[6 marks]				

15 (b) (ii) Hence, show

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Jun22/7357/1

Copyright $\ensuremath{\textcircled{}}$ 2022 AQA and its licensors. All rights reserved.

